助焊剂比重:助焊剂中溶剂载体与其他组分的密度相差较大,助焊剂在储存和使用过程中因为挥发作用而损失掉,造成比重的变化,故比重一定程度上可以反映助焊剂浓度的变化,故比重应用于生产中的管控指标。
在上世纪80年代晚期,蒙特利尔协议颁布,强制消除消耗臭氧层物质(ODCs)。它是松香基助焊剂的主要清洁材料。这就戏剧性地打开了可供选择的助焊剂市场,例如水溶性助焊剂、低残留助焊剂、合成助焊剂被投放到市场。许多制造商选择了调查新材料和新制造方法来作为高固体含量松香助焊剂和ODC清洗可替代的选择。其中的一个途径就是利用低残留助焊剂和不需清洁组装的产品。这些低残留的助焊剂是为了在焊接工艺之后有稳定和良好的残留而设计的,与先前使用的助焊剂形成明显的对照。在这种情况下,制造商选择使用低残留助焊剂在免清洗组装工艺中。
水溶性**助焊剂(OR类型)由水溶性的**酸,如柠檬酸或者**氢卤化物,以及表面活性剂组成。他们的助焊剂残留物通常难溶于碳氢化合物和其他不含氧的**物。水溶性助焊剂的配方变化非常大。他们不像松香助焊剂里那样有一种常见的成分—松香。鉴于残留物的化学特性,材料和制程过程中必须要去除残留物,由此联系到松香,把其当做一个首要的考虑方面。可以说能取代松香的接近的材料回事高分子量的聚乙二醇,选择通过水来简单去除残留物。大多数**酸助焊剂一个很常见的特点是它们较易引起化学反应。这对那些高度氧化的元器件和单板容许有很好的焊接成品率。由于这种反应性,焊接之后的残留物必须完全且快速去除,以避免长期的腐蚀性、表面绝缘电阻干扰和其他问题。
就像它们的名字所表明的,这种类别的助焊剂是水溶性的。然而,焊接后的残留物可能与焊接前的助焊剂所显示的那样,有一样的水溶解性。焊接过程中,助焊剂暴露在非常高的高温下(通常在260℃【500°F】左右)。在这些温度下,例如氧化反应或者高温分解的化学反应有可能会发生。这在元器件和层压板之间会尤其有问题。这样的反应通常会引起多只有部分产物可溶于水。这些反应能发生的程度是时间和暴露温度的函数,也是助焊剂特定的化学特性的函数。这些残留物能在不用放大设备的情况下很*地看到,但是在放大设备下观察,似乎已经完全清洗干净的残留物也依旧会存在于组件中。这种情况下,可以通过使用离子萃取电阻率测试仪或者表面绝缘电阻测试仪来检测这些残留物。
因为这些包括银在内的典型合金比锡铅共金需要更高的熔融温度。
组件贴装和结构的高密度化、(低间隙组件下面会伴有很多助焊剂残留)及元器件的微型化组装使得达到适当的清洁等级已经变得越来越难。组装者必须更好地了解组装后残留的长期影响。由于不够充分的清洗,较小导线间距产生大的电磁场从而导致器件失效。当前行业对清洁度技术规范对下一代电子组装或许是不充分的。